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SUMMARY

To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investiga-

tion was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS

DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact
with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding fric-

tion experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maxi-

mum Hertzian contact pressure of 1.2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at

room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10 -7 Pa), humid air (relative

humidity, ~20 percent), and dr3' nitrogen (relative humidity, <1 percent). The resultant films were characterized by

scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry.
Marked differences in the friction and wear of the DLC films investigated herein resulted from the environ-

mental conditions. The main criteria for judging the performance of the DLC films were coefficient of friction and
wear rate, which had to be less than 0.3 and on the order of 10 --6 mm3/N.m or less, respectively. MS DLC films and

PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coeffi-

cients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three
environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than

the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the

counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.

INTRODUCTION

Diamondlike carbon (DLC) can be divided into two closely related categories known as amorphous,

nonhydrogenated DLC (a-DLC or a-C) and amorphous, hydrogenated DLC (H-DLC or a-C:H) (ref. 1). H-DLC

contains a variable and appreciable amount of hydrogen. DLCcan be considered as a metastable carbon produced as
a thin film with a broad range of structures (primarily amorphous with variable sp2/sp 3 bonding ratio) and composi-

tions (variable hydrogen concentration). A DLC's properties can vary considerably as its structure and composition

vary (refs. 2 to 5). Although it is a complex engineering job, it is often possible to control and tailor the properties
of a DLC to fit a specific application and thus ensure its success as a tribological product. However, such control

demands a fundamental understanding of the tribological properties of DLC films. The absence of this understand-

ing can act as a brake in applying DLC to a new product and in developing the product.
Tribological applications of DLC coatings and films are already well established in a number of fast-growing

markets, such as magnetic recording media, high-density magnetic recording disks and sliders (heads), process

equipment (e.g., copy machines and digital video camcorders), abrasion-resistant optical products, medical devices,

implant components (including hip joints and knee implants), packaging materials, electronic devices, plastic molds,

gear pumps, stamping devices, forming dies, blades (e.g., razor blades and scalpel knives), engine parts (e.g.,
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gudgeonpins),washers(e.g.,grease-freeceramicfaucetvalveseats),seals,valves,gears,bearings,bushings,tools,
andwearparts(refs.6to9).ThecostisgenerallysimilartothatofcarbideornitridefilmsdepositedbyCVDor
physicalvapordeposition(PVD)techniques.Thesurfacesmoothness,highhardness,lowcoefficientof friction,
lowwearrate,andchemicalinertnessofDLCcoatingsandfilms,alongwithlittlerestrictionofgeometryandsize,
makethemwellsuitedassolidlubricantsforapplicationsinvolvingwearandfriction.

Inparts1and2oftheinvestigation(refs.t0 and1I), fourtypesofselectedsolidlubricatingfilmwereexam-
inedinultrahighvacuum,inhumidairatarelativehumidityofapproximately20percent,andindrynitrogen
atarelativehumidityoflessthan1percent.Thefourtypeswerebondedmolybdenumdisulfide(MoS2)films,
magnetron-sputteredMoS2films,ion-platedsilverfilms,andion-platedleadfilms.

Thepresentinvestigation(part3)wasconductedtoexaminethefrictionandwearpropertiesofmagnetron-
sputtereddiamondlikecarbon(MSDLC)andplasma-assisted,chemical-vapor-depositeddiamondlikecarbon
(PACVDDLC)filmsinthesamemannerasinthepartsI and2investigations.BothMSDLCandPACVDDLC
filmscanbeconsideredasa-DLC(amorphous,nonhydrogenatedDLC).Magnetronsputteringandplasma-assisted
CVDpermitclosecontroloffilmdepositionandthickness,canprovidegoodadhesiontothesubstrate,andcan
producemultilayercoatings.Unidirectionalpin-on-diskslidingfrictionexperimentswereconductedwith"440C
stainless steel balls in sliding contact with the solid lubricating films at room temperature in ultrahigh vacuum

(7x10 -7 PaL in humid air (relative humidity, -20 percent), and in dry nitrogen (relative humidity, <1 percent). The

resultant solid lubricating films and their wear surfaces were characterized by scanning electron microscopy (SEM),

energy-dispersive x-ray spectroscopy (EDX), and surface profilometry. SEM and EDX were used to determine the

morphology and elemental composition of wear surfaces, wear debris, and wear of the balls. The sampling depth of
EDX for elemental information ranged between 0.5 and 1 ram in this investigation. Surface profilometry was used to

determine the surface morphology, roughness, and wear of the coatings.

SELECTED MATERIALS

Three specimens of each film type, MS DLC and PACVD DLC, produced on 440C stainless steel disk sub-

strates were used in this investigation (table I). The MS DLC films had a multilayer structure and were prepared

using two chromium targets, 6 tungsten carbide (_7C) targets, and methane (CH 4) gas. Each multilayer film com-

prised WC layers (20 to 50 nm thick) alternating with carbon layers (20 to 50 nm thick). The Vickers hardness num-

ber was approximately 1000. The 2- to 3-1_m-thick MS DLC films were relatively smooth, and their

centerline-average roughness R a, measured using a cutoff of 1 mm, was 43 nm with a standard deviation of 5.1 nm.
The PACVD DLC films were prepared using radiofrequency plasma and consisted of two layers. Each film

comprised an approximately 2-_m-thick DLC layer on an approximately 2-_tm-thick silicon-DLC underlayer. The

top DLC layer was deposited using CH 4 gas at a total pressure of 8 Pa with a power of t 800 to 2000 W at -750 to
-850 V for t 20 rain. The silicon-containing DLC underlayer was deposited using a mixture of CH 4 and C4HI2Si

(tetramethylsilane) gases. The ratio of the concentrations of CH 4 and C4HI2Si used was 90:18 (std cm3/min) at a

total pressure of 10 Pa with a power of 1800 to 2000 W at -850 to -880 V for 60 min. The Vickers hardness number

was 1600 to 1800. The 3- to 5-1am-thick PACVD DLC films were also relatively smooth and their R a, measured

using a cutoff of 1 mm, was 29 nm with a standard deviation of 3.2 nm. The 6-mm-diameter 440C stainless steel

balls (grade number, 10) used were smooth having an R a of 0.025 larn with a standard deviation of 0.02 lain or less.

EXPERIMENT

The pin-on-disk tribometer used in the investigation was mounted in a vacuum chamber (refs. 10 and 11).

Unidirectional pin-on-disk sliding friction experiments were conducted at room temperature in ultrahigh vacuum

(7x10 -7 Pa), in humid air (relative humidity, -20 percent), and in dry nitrogen (relative humidity, <1 percent). All

experiments were conducted with 6-mm-diameter 440C stainless steel balls in sliding contact with the DLC films

deposited on 440C stainless steel substrate disks. All experiments were conducted with a load of 5.9 N (600 g) at

the sliding velocity of 0.2 m/s. The mean Hertzian contact pressure of the 440C stainless steel substrates in contact
with the 440C stainless steel balls was approximately 0.79 GPa (maximum Hertzian contact pressure, 1.2 GPa). The

pin-on-disk tribometer can measure friction in vacuum, in humid air, and in dry nitrogen during sliding. The friction

force was continuously monitored during the sliding friction experiments.
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Theslidingwearlife(filmwearlifeorfilmendurancelife)forthecoatingsin thisinvestigationwasdetermined
tobethenumberofpassesatwhichthecoefficientoffrictionroseto0.3inagivenenvironment.Wearwasquanti-
fiedbymeasuringthewearscarsandweartracksonthespecimensafterthewearexperiments.Filmwearvolumes
wereobtainedbyaveragingthecross-sectionalareas,determinedfromstylustracings,measuredacrossthewear
tracksataminimumoffourlocationsineachweartrack.Then,theaveragecross-sectionalareaoftheweartrack
wasmultipliedbytheweartracklength.Thewearrate,knownasthedimensionalwearcoefficient,isdefinedasthe
volumeofmaterialremovedataunitloadandinaunitslidingdistanceexpressedascubicmillimetersper
newton .meter.

RESULTS AND DISCUSSION

Friction Behavior

Figures 1 to 3 present typical friction traces obtained in ultrahigh vacuum, in humid air, and in dry nitrogen,

respectively, for the MS DLC and PACVD DLC films in sliding contact with 440C stainless steel balls as a function

of the number of passes. All the friction traces for the DLC films obtained in the three environments fluctuated. In

ultrahigh vacuum (fig. 1) the coefficient of friction for both the MS DLC and PACVD DLC films rose to 0.3 in a

few passes; the steady-state values were approximately 0.7 for the MS DLC films and 0.54 for the PACVD DLC

films. In humid air (fig. 2) the coefficients of friction for both the MS DLC and PACVD DLC films decreased

to approximately 0.1 ; the steady-state value for the PACVD DLC films was generally lower than that for the MS

DLC films. In dry nitrogen (fig. 3) the coefficient of friction for the MS DLC films increased to 0.3 at approximately

24 000 passes, and the steady-state coefficient of friction for the PACVD DLC films decreased to 0.05 at 300 000

passes.

Comparing the data taken in the different environments (figs. 1 to 3) shows that the coefficients of friction for
both the MS DLC and PACVD DLC films were much higher in ultrahigh vacuum than in humid air and in dry nitro-

gen. The coefficients of friction of the PACVD DLC films were generally lower than those of the MS DLC films in
all three environments.

Wear Behavior

Figures 4 to 6 present SEM photomicrographs of wear tracks on the MS DLC and PACVD DLC films depos-
ited on 440C stainless steel disks and the wear scars on the 440C stainless steel balls in ultrahigh vacuum, in hunfid

air, and in dry nitrogen, respectively. The SEM observations were made at I000 passes in ultrahigh vacuum, at
300 000 passes in humid air, and either at the end of film wear life or at 300 000 passes in dry nitrogen. In ultrahigh

vacuum (fig. 4) the sliding action roughened the entire wear tracks of the MS DLC films at 1000 passes but locally

produced micro-pits in the wear tracks of the PACVD DLC films. With both films types in ultrahigh vacuum, wear

debris particles and agglomerated wear debris were generated during sliding. In humid air the sliding action gener-

ated smooth wear surfaces on the MS DLC films and deposited a large amount of agglomerated, pasty wear debris

on the wear scars of the 440C stainless steel balls (fig. 5(a)). In humid air the sliding action generated a smooth wear

surface on the PACVD DLC films with relatively large wear debris particles (fig. 5(b)). In dry nitrogen the sliding

action generated a smooth wear surface for both film types and produced fine wear debris particles with the MS

DLC films (fig. 6(a)) and relatively large wear debris particles with the PACVD DLC films (fig. 6(b)).

The wear scars on the 440C stainless steel balls were generally smooth, regardless of the environment. Thin,

smeared wear patches and particles of the DLC films generally covered the smooth wear scars. Smeared tongues of

thin, layered, agglomerated wear debris were also present. Most of the loose and smeared wear debris accumulated
outside the wear scars.

Wear (Endurance) Life

As in parts 1 and 2 of the investigation (refs. 10 and i I) the sliding wear (endurance) life of the solid lubricating

films deposited on 440C stainless steel disks was determined to be the number of passes at which the coefficient of

NAS A/TM--2000-209088/PART 3 3



frictionroseto0.3.Theslidingwearlivesof theDLCfilmsexaminedin thisinvestigation(tableII) variedwiththe
environment.Whenjudgedbythecoefficientoffriction,thewearlivesofbothfilmtypeswereextremelyshortin
ultrahighvacuum.TheMSDLCfilmshadmuchlongerwearlivesinhumidairthanindr),nitrogenandinultrahigh
vacuum.ThePACVDDLCfilmshadmuchlongerwearlivesinhumidairandindrynitrogenthaninultrahigh
vacuum,

ComparisonofSteady-StateCoefficientsofFrictionandWearRates

TableII alsopresentsthesteady-statecoefficientsoffrictionandthefilmandballwearratesafterslidingcon-
tactinallthreeenvironments.Thedatapresentedinthetablerevealthemarkeddifferencesincoefficientoffriction
resultingfromtheenvironmentalconditions.BoththeMSDLCandPACVDDLCfilmshadhighcoefficientsof
friction,highfilmwearrates,andhighballwearratesinultrahighvacuumbutrelativelylowcoefficientsoffriction,
lowfilmwearrates,andlowballwearratesinhumidairandindrynitrogen.Bothfilmtypesmetthemaincriteria
forjudgingthetribologicalperformanceoffilms(coefficientoffrictionlessthan0.3andwearrateontheorder
of 10-6mm3/N.morless)inhumidairandindrynitrogen.Inslidingcontactwitha440Cstainlesssteelballthe
PACVDDLCfilmsexhibitedbettertribologicalperformance(i.e.,lowerfrictionandwear)thandidtheMSDLC
filmsinallthreeenvironments.

SlidingWear,WearDebris,andTransferredWearFragments

ExaminingthemorphologyandcompositionofthewornsurfacesofMSDLCandPACVDDLCfilmsin
slidingcontactwith440CstainlesssteelballsbySEMandEDXprovideddetailedinformationaboutplasticdefor-
mationoftheDLCfilms,weardebris,andtransferredwearfragmentsproducedduringsliding(figs.7to12).All
slidinginvolvedgenerationoffineweardebrisparticlesandagglomeratedweardebrisandtransferoftheworn
materials.

Ultra-high-vacuum environment. Figure 7(a) presents a typical wear track on an MS DLC film over which

a 440C stainless steel ball has passed in ultrahigh vacuum leaving a roughened worn DLC film surface and a small

amount of transferred steel wear fragments. The wear scar on the counterpart 440C stainless steel ball (fig. 7(b))

contained fine steel wear debris particles and a small amount of transferred DLC wear fragments. The wear mecha-

nism for an MS DLC film in sliding contact with a 440C stainless steel ball in ultrahigh vacuum is that of small

DLC fragments chipping off the surface.

Figure 8(a) presents a typical wear track on a PACVD DLC film over which a 440C stainless steel ball has

passed in ultrahigh vacuum leaving smeared, agglomerated DLC wear debris and a small amount of transferred

steel wear fragments. The wear scar on the counterpart 440C stainless steel ball (fig. 8(b)) contained fine steel wear

debris particles and large smeared, agglomerated wear debris patches containing transferred DLC wear fragments.

The wear mechanism for a PACVD DLC film in sliding contact with a 440C stainless steel ball in ultrahigh vacuum

was adhesion, and plastic deformation played a role in the burnished appearance of the agglomerated wear debris.

Humid-air environment. Figure 9(a) presents a typical wear track on an MS DLC film over which a 440C

stainless steel ball has passed in humid air leaving a small amount of transferred steel wear fragments. The fine

asperities of the MS DLC film were flattened and elongated in the sliding direction by plastic deformation, revealing

a smooth, burnished appearance. The entire wear scar on the counterpart 440C stainless steel ball (fig. 9(b)) con-

tained thick transferred layers (or sheets) of MS DLC. Plate-like DLC wear debris particles were found at the edges

of the wear scar. Severe plastic deformation and sheafing occurred in the DLC film during sliding.

Figure 10(a) presents a typical wear track on a PACVD DLC film over which a 440C stainless steel ball has

passed in humid air leaving a small amount of transferred steel wear fragments. The fine asperities of the PACVD

DLC film were flattened and elongated in the sliding direction by plastic deformation, revealing a smooth, burnished

appearance. The smooth wear scar on the counterpart 440C stainless steel ball (fig. 10(b)) contained an extremely
small amount of transferred PACVD DLC wear debris.

Dry-nitrogen environment.--Figure 11 (a) presents a typical wear track on an MS DLC film over which a 440C

stainless steel ball has passed in dr), nitrogen. At 23 965 passes (end of life) there was an extremely small amount of

transferred steel wear debris, and the fine asperities of the MS DLC film were flattened and elongated in the sliding

direction by plastic deformation, revealing a smooth, burnished appearance. In addition to the small amount of steel
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weardebrisparticles,smeared,agglomeratedDLCweardebriswasfoundontheMSDLCfilm.Plasticdeformation
occurredin theDLCfilmduringsliding.Thewearscaronthecounterpart440Cstainlesssteelball(fig.11(b))con-
tainedtransferredDLCweardebrisparticlesandpatches.

Figure12(a)presentsatypicalweartrackonaPACVDDLCfilmoverwhicha440Cstainlesssteelballhas
passedindrynitrogen.At300000passesDLCweardebris,micro-pits,andanextremelysmallamountoftrans-
ferredsteelweardebriswereobserved.Thewearscaronthecounterpart440Cstainlesssteelball(fig.12(b))con-
tainedfinegroovesin theslidingdirection,steelweardebris,andtransferredDLCweardebris.

CONCLUSIONS

Toevaluaterecentlydevelopeddiamondlikecarbon(DLC)filmlubricantsforaerospacebearingapplications,
unidirectionalslidingfrictionexperimentswereconductedwithDLCfilmsinslidingcontactwithAIS1440C
stainlesssteelballsinultrahighvacuum,inhumidair,andindrynitrogen.Themaincriteriaforjudgingtheperfor-
manceoftheDLCfilmswerecoefficientoffrictionandwearrate,whichhadtobelessthan0.3andontheorderof
10_5mm3/N.morless,respectively.Thefollowingconclusionsweredrawn:

1.Magnetron-sputtered(MS)DLCfilmsandplasma-assisted,chemical-vapor-deposited(PACVD)DLCfilmsmet
thecriteriainhumidairandindrynitrogenbutfailedinultrahighvacuum,wherethecoefficientsoffriction
weregreaterthanthecriterion,0.3.

2. Inslidingcontactwitha440CstainlesssteelballthePACVDDLCfilmsexhibitedbettertriboiogicalperfor-
mance(i.e.,lowerfrictionandwear)inallthreeenvironmentsthantheMSDLCfilms.

3. All slidinginvolvedadhesivetransferofwearmaterials:transferofDLCweardebristothecounterpart440C
stainlesssteelballandtransferof440CstainlesssteelweardebristothecounterpartDLCfilm.
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TABLE I.--CHARACTERISTICS OF SELECTED SOLID

LUBRICATING FILMS

[Film material, carbon; substrate material, 440C stainless steel.]

Film type Film Surface roughness of films.

Magnetron-sputtered
diamondlike carbon (MS DLC)

i_lasma-assisted, chemical-

vapor-deposited diamondlike

carbon (PACVD DLC)

thickness.

pm

2-3

3-5

Ru_

nm

Mean Standard

deviation

43 5.1

29 3.2

Magnetron-

sputtered DLC

TABLE II.--STEADY-STATE COEFFICIENT OF FRICTION, WEAR LIFE,

AND WEAR RATES FOR DLC FILMS IN SLIDING CONTACT WITH

440C STAINLESS TEEL BALLS

Film Environment Steady-state Film wear Film wear Ball wear
coefficient of (endurance) rate, rate,

friction life a nma 3,CN.m nm13/N.m

Vacuum 0.70 <10 5.7×10 -_ 3.2×10 -4

Plasma-assisted

CVD DLC

Air 0.12

iNitrogen 0.12

Vacuum 0.54

Air 0.07

Nitrogen 0.06

>3×10 _

23 965

<10

>3×10 _

>3×10 _

1.1xlO -_

l.OxltY _

l.lxlO -s

1.8xlO -a

2.3x10 -8

6.4x10 -9

_Film wear life is determined to be the number of passes at which the coefficient of
friction rose to 0.3.
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Figure 1.--Friction traces for (a) MS DLC film and
(b) PACVD DLC film in sliding contact with 440C
stainless steel balls in ultrahigh vacuum.
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Figure 2.--Friction traces for (a) MS DLC film and
(b) PACVD DLC film in sliding contact with 440C
stainless steel balls in humid air.
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Figure 3.--Friction traces for (a) MS DLC film and
(b) PACVD DLC film in sliding contact with 440C
stainless steel balls in dry nitrogen.
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Film wear track Ball wear scar

(a) Sliding direction

' 'i
100 I_m 100 I_m

(b) Sliding direction

Figure 4.mWear tracks and wear scars in ultrahigh vacuum at 1000 passes. (a) Materials pair of MS DLC film and
440C stainless steel ball. (b) Materials pair of PACVD DLC film and 440C stainless steel ball.
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Figure 5._Wear tracks and wear scars in humid air at 300 000 passes. (a) Materials pair of MS DLC film and
440C stainless steel ball. (b) Materials pair of PACVD DLC film and 440C stainless steel ball.
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(a)

Film wear track

100 _m

Sliding direction

Ball wear scar

(b) Sliding direction

Figure 6.mWear tracks and wear scars in dry nitrogen. (a) Materials pair of MS DLC film and 440C stainless
steel ball at 23 965 passes. (b) Materials pair of PACVD DLC film and 440C stainless steel ball at 300 000

passes,
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Figure 7.mMorphoIogy and elemental composition by SEM and EDX (a) of wear track produced on MS DLC

film and (b) of wear scar produced on 440C stainless steel ball at 1000 passes in ultrahigh vacuum.
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Figure 8.--Morphology and elemental composition by SEM and EDX (a) of wear track produced on PACVD DLC
film and Co)of wear scar produced on 440C stainless steel ball at 1000 passes in ultrahigh vacuum.
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Figure 9.mMorphology and elemental composition by SEM and EDX (a) of wear track produced on MS DLC
film and (b) of wear scar produced on 440C stainless steel ball at 300 000 passes in humid air.
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Figure 10.--Morphology and elemental composition by SEM and EDX (a) of wear track produced on PACVD

DLC film and (b) of wear scar produced on 440C stainless steel ball at 300 000 passes in humid air.
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Figure 11 .--Morphology and elemental composition by SEM and EDX (a) of wear track produced on MS DLC

film and (b) of wear scar produced on 440C stainless steel ball at 23 965 passes in dry nitrogen
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Figure 12.mMorphology and elemental composition by SEM and EDX (a) of wear track produced on PACVD
DLC film and (b) of wear scar produced on 440C stainless steel ball at 300 000 passes in dry nitrogen.
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